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Correlation functions for glass-forming systems

R. L. Jacobs
Mathematics Department, Imperial College, 180 Queen’s Gate, London SW7 2BZ, United Kingdom

~Received 18 January 2000!

We present a simple, linear, partial-differential equation for the density-density correlation function in a
glass-forming system. The equation is written down on the basis of fundamental and general considerations of
linearity, symmetry, stability, thermodynamic irreversibility and consistency with the equation of continuity
~i.e., conservation of matter!. The dynamical properties of the solutions show a change in behavior character-
istic of the liquid–glass transition as a function of one of the parameters~temperature!. The equation can be
shown to lead to the simplest mode-coupling theory of glasses and provides a partial justification of this
simplest theory. It provides also a method for calculating the space dependence of the correlation functions not
available otherwise. The results suggest certain differences in behavior between glassy solids and glass-
forming liquids which may be accessible to experiment. A brief discussion is presented of how the method can
be applied to other systems such as sandpiles and vortex glasses in type II superconductors.

PACS number~s!: 64.70.Dv, 61.20.2p
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The glass transition is a continuous transition betwee
disordered solid and a viscoelastic liquid. Both systems
be described in terms of linear partial-differential equatio
~in the limit of small strains and low flow velocities! @1,2#.
This suggests that a similar linear differential equation c
be written down for the density-density correlation functi
F(r ,t)5^dr(r ,t)udr(0,0)& which describes the system o
both sides of the transition wheredr(r ,t) is the excess den
sity at the pointr and timet. The simplest, low-order, linear
partial-differential equation which contains enough inform
tion to describe the transition is
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The interpretation is as follows: The equation is a damp
wave equation with an extra term. The coefficient of the fi
term on the left is a mass density and is therefore posi
and is normalized to unity. The coefficient of the last term
the right is a compressibility and is therefore positive
stability. The coefficient of the second term on the left is
damping and the thermodynamic arrow of time implies t
it is positive also. The first term on the right, the extra ter
arises from the fact that the object we are calculating i
correlation function and the average we are calculating is
average conditional on the fact that the excess density a
origin is nonzero at time zero. Thus rotational symmetry
mains but translational symmetry with respect to the origin
broken and a term of this kind is therefore allowed. It wou
of course be forbidden if we were calculating the density
subject to the condition because then the symmetry wo
not be broken. There is no basic principle which helps us
decide the sign of the coefficient and we shall see that
reasonable to assume that it depends on the temperature
ing positive at lowT and negative at highT. A further point
is that the equation may be split into two equations thus
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or equivalently in vectorial form

]F

]t
1div J50

and

]J

]t
1gJ1aF r̂1b gradF50, ~3!

which displays the equation of continuity explicitly and e
tablishes that the equation preserves conservation of ma

The one-dimensional version of these equations is as
lows:
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50, ~4!
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It is slightly easier to relate this version to the mode-coupl
@3–7# theories and its solutions are closely related to
solutions of the full three-dimensional equation~1!. We will
present solutions of the one-dimensional equation only
comment on the relation of these to the solutions of
three-dimensional equation~1!. We have written the coeffi-
cients in a slightly different form to make the relation to th
mode-coupling theories a little more obvious later. We on
note here thata is a length scale,V is a frequency, andl
[T0 /T is an inverse temperature and that the coefficien
F changes sign atT5T0.

A simple way of solving the equations is to discretize t
length scale and solve the resulting coupled ordina
differential equations by a simple Runge-Kutta method. T
discretization procedure gives the following equations:
1438 ©2000 The American Physical Society
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dFn~ t !

dt
1

1

a
„Jn1

1
2
~ t !2Jn2

1
2
~ t !…50, ~6!

dJn1
1
2
~ t !

dt
1g„Jn1

1
2
~ t !2V2a Fn~ t !1lV2a Fn11~ t !…50

~7!

whereFn(t)5F(na,t) andJn11/2(t)5J„(n11/2)a,t…. The
initial condition used isFn(0)50 for nÞ0 andF0(0)51
and Jn11/2(0)50 for all n, which corresponds in the con
tinuum case toF(x,0)52d(x) and J(x,0)50. The condi-
tion at n50 is J21/2(t)50 for all t.

We present graphs of the results forl.1 i.e., for T
,T0 in Figs. 1 and 2 and forl,1, i.e., forT.T0 in Figs. 3
and 4. Note that forl,1

FIG. 1. F vs t for l51.3 ~i.e., low T) at x51 ~heavy curve!, 2,
3, 4, 5 ~dashed curve!. The remaining parameters areV51, g55,
anda51. Note that the curves approach finite limits ast→` char-
acteristic of a solid.

FIG. 2. F vs x for l51.3 ~i.e., low T) at t510 ~heavy curve!,
30, 50, 70, 90~dashed curve!. The remaining parameters areV
51, g55, anda51. Note that the curves approach an envelope
t→` indicating a freezing phenomenon.
Fn~ t !→0

and

F~x,t !→0 as t→`

but that forl.1

Fn~ t !→ l21

ln

and

F~x,t !→2~l21!

l11
expS 2

2~l21!x

~l11!a D as t→`.

This demonstrates that the correlation function has at h
temperature the characteristic behavior of a liquid where

s

FIG. 3. F vs t for l50.7 ~i.e., highT) at x51 ~heavy curve!, 2,
3, 4, 5 ~dashed curve!. The remaining parameters areV51, g55,
anda51. Note that the curves approach zero ast→` characteristic
of a liquid.

FIG. 4. F vs x for l50.7 ~i.e., highT) at t5100~heavy curve!,
300, 500, 700, 900~dashed curve!. The remaining parameters ar
V51, g55, anda51. Note the outgoing wave pulse.
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imposed strain produces a stress that decays to zerot
increases and that it has at low temperature the characte
behavior of a solid where an imposed strain produces a s
that does not decay to zero ast increases. These results r
main true in three dimensions. Internal stresses of this k
are indeed characteristic of glasses.

Furthermore at high temperatures the imposed strai
the origin decays via an almost dispersionless outward t
eling wave pulse as is shown in Fig. 4. The speed of pro
gation of the pulse isul21uV2a/g, which goes to 0 asT
→T0. In three dimensions the pulse decays proportiona
1/r 2 as it travels outward. These outward-traveling wav
appear only aboveT0 and this indicates that there are stro
differences in the properties of the dynamical correlat
functions between solid and liquid nearT0, which may be
accessible experimentally. These results are sensitive to
assumed form of the damping term which may be overs
plified here. Obviously more research is needed on this po
At low temperatures the imposed strain settles down to
exponentially decreasing profile~in x) which is very much
what one would expect on physical grounds. These res
seem related to some recently reported experiments@8#.

At the transition temperatureT5T0 the asymptotic form
of Eq. ~1! can be solved exactly because the first term on
left becomes negligible and the equation becomes the d
sion equation and this gives the three-dimensional result

F~r ,t !5S 1

4pDt D
3/2

exp~2r 2/4Dt ! ~8!

with D5b/g and a corresponding result in one dimensio
If we take Laplace transforms of the discrete equations~6!

and ~7! we get algebraic equations forF̃n(p)
[*0

`Fn(t)exp(2pt)dt which can be solved forf̃(p)

[F̃0(p) by elementary matrix manipulations. The result c
be inverse transformed to give the following integrodiffere
tial equation forf(t):

f̈~ t !1gḟ~ t !1V2f~ t !1lV2E
0

t

f~ t2t!ḟ~t!dt50.

~9!

This equation is well known as the simplest mode-coupl
equation for the glass transition@5,6#. This shows that this
simplest theory is a consequence of the one-dimensi
phenomenological theory outlined above.
u

s
tic
ss

d

at
v-
a-

o
s

n

he
-
t.
n

lts

e
u-

-

g

al

More complicated versions of this equation exist whi
have the kernelf(t2t) replaced by a low-order polynomia
in f(t2t) @3,4,7,9#. Some kind of microscopic many-bod
theory is usually presented in justification of these versio
It is clearly impossible to relate these versions to a lin
partial-differential equation which interpolates smoothly b
tween the corresponding equations for a liquid and a so
Furthermore a reasonably simple heuristic argument can
mounted in favor of the simplest mode-coupling theory w
linear kernel @5#. We consider our phenomenological an
heuristic arguments as strong evidence for the essential
rectness of the simplest version of the mode-coupling the

Numerical calculations off(t) from Eq. ~9! andF(0,t)
from Eqs.~4! and~5! compare very well thus confirming th
correctness of the numerical analysis and the algebra.
phenomenological partial-differential equation however
superior because it enables us to calculate the space de
dence of the correlation functions~impossible in the mode-
coupling theories@7#! and to generalize from one to thre
dimensions.

In order to see the range of validity of our phenomen
ogy it is worthwhile examining analogies with other system
There are two systems that provide two-dimensional a
logues of glasses; the first is the vortex system in extre
type II superconductors, the second is a sandpile i.e., a
of strongly interacting but not cohesive objects on a flat s
face. In some experiments@10# on the vortex system long
lived pulses of increased vortex density are observed
travel across the sample under the influence of an exte
force. These pulses may be similar to the almost dispers
less pulses seen in our calculations at highT. A crucial ex-
periment would be to measure the velocity of the pulses
the experimental system as a function ofT and check
whether the velocity disappears at some finite low tempe
ture as our results indicate. Sandpiles bear a certain op
tional similarity to low-T glasses as the following exper
ment suggests. Insert a pencil vertically into a sandpile
displace it laterally. Observe the resulting lateral force on
pencil as a function of time. The force will decay from i
initial value to a lower value and then remain steady. T
force displays the same remnant behavior as the stress
similar experiment on a glassy system at lowT. Investiga-
tions of the transport of matter up and down the slope
shaken and unshaken sandpiles are obviously relevant h
Some simple models of sandpiles@11# have the same one
sided character as our basic equations~1!, ~2!, ~3!, and~5!.
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